Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Neurotoxicol Teratol ; 102: 107330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307398

RESUMO

Epidemiological studies have reported associations between elevated manganese (Mn) exposure and poorer psychomotor performance in children. Our studies in adult male rats have established that this relationship is causal and that prolonged methylphenidate (MPH) treatment is efficacious in treating this area of dysfunction. However, it is unclear if sensitivity to these Mn deficits differs between females and males, and whether existing pharmacological therapies are efficacious in improving sensorimotor dysfunction in females. To address these questions, we used our rat model of childhood environmental Mn exposure and the Montoya staircase test to determine whether 1) there are sex differences in the lasting sensorimotor dysfunction caused by developmental Mn exposure, and 2) MPH treatment is efficacious in ameliorating the sensorimotor deficits in females. Female and male neonates were treated orally with Mn (50 mg Mn/kg/d) from postnatal day 1 to 21 and evaluated for skilled forelimb sensorimotor performance as adults. Subsequently, the efficacy of acute oral MPH treatment (doses of 0, 0.5, and 3.0 mg MPH/kg/d) was assessed in females using a within-subject MPH treatment design. Developmental postnatal Mn exposure produced lasting sensorimotor reaching and grasping deficits that were milder in females than in males. Acute MPH treatment of Mn-exposed females with the 0.5 mg/kg/d dose attenuated the reaching dysfunction without alleviating grasping dysfunction. These findings show sex-based variations in sensitivity to the sensorimotor impairment caused by developmental Mn exposure, and they are consistent with prior studies showing less vulnerability of females to Mn-induced dysfunction in other functional domains, possibly due to the protective effects of estrogen. Given our previous work showing the efficacy of MPH treatment to alleviate Mn-induced inattention, impulsiveness, and sensorimotor dysfunctions in adult male rats, they also highlight the need for further research into sex-based differences in cognitive and behavioral areas of brain function, and the efficacy of therapeutics in treating behavioral dysfunction in females. Supported by NIEHS R01ES028369.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Humanos , Criança , Ratos , Animais , Masculino , Feminino , Metilfenidato/farmacologia , Manganês/toxicidade , Desempenho Psicomotor
2.
Neurotoxicol Teratol ; 102: 107337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38423398

RESUMO

Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (GD 3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Manganês , Humanos , Animais , Ratos , Feminino , Gravidez , Criança , Masculino , Manganês/toxicidade , Roedores , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/prevenção & controle , Ratos Long-Evans , Suplementos Nutricionais , Colina
3.
Environ Res ; 250: 118443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365053

RESUMO

Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the expression of externalizing disorders is more common among males, few studies have addressed how sex modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals (manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive behavior in males compared to females (ß = -0.058, 95% CI [-0.126, -0.009]). In males, exposure was significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/young adulthood may play a role in sex disparities observed in mental health disorders, particularly those characterized by externalizing symptoms.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38266866

RESUMO

Environmental manganese (Mn) exposure is associated with impaired attention and psychomotor functioning, as well as impulsivity/hyperactivity in children and adolescents. We have shown previously that developmental Mn exposure can cause these same dysfunctions in a rat model. Methylphenidate (MPH) lessens impairments in attention, impulse control, and psychomotor function in children, but it is unknown whether MPH ameliorates these dysfunctions when induced by developmental Mn exposure. Here, we sought to (1) determine whether oral MPH treatment ameliorates the lasting attention and sensorimotor impairments caused by developmental Mn exposure, and (2) elucidate the mechanism(s) of Mn neurotoxicity and MPH effectiveness. Rats were given 50 mg Mn/kg/d orally over PND 1-21 and assessed as adults in a series of attention, impulse control and sensorimotor tasks during oral MPH treatment (0, 0.5, 1.5, or 3.0 mg/kg/d). Subsequently, selective catecholaminergic receptor antagonists were administered to gain insight into the mechanism(s) of action of Mn and MPH. Developmental Mn exposure caused persistent attention and sensorimotor impairments. MPH treatment at 0.5 mg/kg/d completely ameliorated the Mn attentional dysfunction, whereas the sensorimotor deficits were ameliorated by the 3.0 mg/kg/d MPH dose. Notably, the MPH benefit on attention was only apparent after prolonged treatment, while MPH efficacy for the sensorimotor deficits emerged early in treatment. Selectively antagonizing D1, D2, or α2A receptors had no effect on the Mn-induced attentional dysfunction or MPH efficacy in this domain. However, antagonism of D2R attenuated the Mn sensorimotor deficits, whereas the efficacy of MPH to ameliorate those deficits was diminished by D1R antagonism. These findings demonstrate that MPH is effective in alleviating the lasting attentional and sensorimotor dysfunction caused by developmental Mn exposure, and they clarify the mechanisms underlying developmental Mn neurotoxicity and MPH efficacy. Given that the cause of attention and psychomotor deficits in children is often unknown, these findings have implications for the treatment of environmentally induced attentional and psychomotor dysfunction in children more broadly.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Disfunção Cognitiva , Metilfenidato , Humanos , Criança , Adolescente , Ratos , Animais , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Manganês/toxicidade , Atenção , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Disfunção Cognitiva/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/farmacologia
5.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873333

RESUMO

Environmental manganese (Mn) exposure is associated with impaired attention and psychomotor functioning, as well as impulsivity/hyperactivity in children and adolescents. We have shown previously that developmental Mn exposure can cause these same dysfunctions in a rat model. Methylphenidate (MPH) lessens impairments in attention, impulse control, and sensorimotor function in children, but it is unknown whether MPH ameliorates these dysfunctions when induced by developmental Mn exposure. Here, we sought to (1) determine whether oral MPH treatment ameliorates the lasting attention and sensorimotor impairments caused by developmental Mn exposure, and (2) elucidate the mechanism(s) of Mn neurotoxicity and MPH effectiveness. Rats were given 50 mg Mn/kg/d orally over PND 1-21 and assessed as adults in a series of attention, impulse control and sensorimotor tasks during oral MPH treatment (0, 0.5, 1.5, or 3.0 mg/kg/d). Subsequently, selective catecholaminergic receptor antagonists were administered to gain insight into the mechanism(s) of action of Mn and MPH. Developmental Mn exposure caused persistent attention and sensorimotor impairments. MPH treatment at 0.5 mg/kg/d completely ameliorated the Mn attentional dysfunction, whereas the sensorimotor deficits were ameliorated by the 3.0 mg/kg/d MPH dose. Notably, the MPH benefit on attention was only apparent after prolonged treatment, while MPH efficacy for the sensorimotor deficits emerged early in treatment. Selectively antagonizing D1, D2, or α2A receptors had no effect on the Mn-induced attentional dysfunction or MPH efficacy in this domain. However, antagonism of D2R attenuated the Mn sensorimotor deficits, whereas the efficacy of MPH to ameliorate those deficits was diminished by D1R antagonism. These findings demonstrate that MPH is effective in alleviating the lasting attention and sensorimotor dysfunction caused by developmental Mn exposure, and they clarify the mechanisms underlying developmental Mn neurotoxicity and MPH efficacy. Given that the cause of attention and psychomotor deficits in children is often unknown, these findings have implications for the treatment of environmentally-induced attentional and psychomotor dysfunction in children more broadly.

6.
Neurotoxicol Teratol ; 100: 107307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37832858

RESUMO

BACKGROUND: Manganese (Mn) is both an essential and toxic metal, and associations with neurodevelopment depend on exposure timing. Prospective data examining early life Mn with adolescent cognition are sparse. METHODS: We enrolled 140 Italian adolescents (10-14 years old) from the Public Health Impact of Metals Exposure study. Mn in deciduous teeth was measured using laser ablation-mass spectrometry to represent prenatal, postnatal and early childhood exposure. The California Verbal Learning Test for Children (CVLT-C) was administered to assess adolescent verbal learning and memory. Multivariable regression models estimated changes in CVLT-C scores and the odds of making an error per doubling in dentine Mn in each exposure period. Multiple informant models tested for differences in associations across exposure periods. RESULTS: A doubling in prenatal dentine Mn levels was associated with lower odds of making an intrusion error (OR = 0.23 [95% CI: 0.09, 0.61]). This beneficial association was not observed in other exposure periods. A doubling in childhood Mn was beneficially associated with short delay free recall: (ß = 0.47 [95% CI: -0.02, 0.97]), which was stronger in males (ß = 0.94 [95% CI: 0.05, 1.82]). Associations were null in the postnatal period. CONCLUSION: Exposure timing is critical for understanding Mn-associated changes in cognitive function.


Assuntos
Exposição Ambiental , Manganês , Masculino , Criança , Gravidez , Feminino , Humanos , Pré-Escolar , Adolescente , Manganês/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estudos Prospectivos , Cognição , Aprendizagem Verbal
7.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37425833

RESUMO

Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (G3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning. Highlights: Developmental Mn exposure causes lasting dysfunction consistent with ADHD symptomology.Maternal choline supplementation (MCS) protects against Mn-induced deficits in attention and behavioral reactivity.MCS in control animals produces lasting benefits to offspring in learning, attention, and error reactivity.These data support efforts to increase choline intake during pregnancy, particularly for individuals at risk of neurotoxicant exposure.

8.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G251-G264, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37461848

RESUMO

Manganese (Mn) is essential but neurotoxic at elevated levels. Under physiological conditions, Mn is primarily excreted by the liver, with the intestines playing a secondary role. Recent analyses of tissue-specific Slc30a10 or Slc39a14 knockout mice (SLC30A10 and SLC39A14 are Mn transporters) revealed that, under physiological conditions: 1) excretion of Mn by the liver and intestines is a major pathway that regulates brain Mn; and surprisingly, 2) the intestines compensate for loss of hepatic Mn excretion in controlling brain Mn. The unexpected importance of the intestines in controlling physiological brain Mn led us to determine the role of hepatic and intestinal Mn excretion in regulating brain Mn during elevated Mn exposure. We used liver- or intestine-specific Slc30a10 knockout mice as models to inhibit hepatic or intestinal Mn excretion. Compared with littermates, both knockout strains exhibited similar increases in brain Mn after elevated Mn exposure in early or later life. Thus, unlike physiological conditions, both hepatic and intestinal Mn excretion are required to control brain Mn during elevated Mn exposure. However, brain Mn levels of littermates and both knockout strains exposed to elevated Mn only in early life were normalized in later life. Thus, hepatic and intestinal Mn excretion play compensatory roles in clearing brain Mn accumulated by early life Mn exposure. Finally, neuromotor assays provided evidence consistent with a role for hepatic and intestinal Mn excretion in functionally modulating Mn neurotoxicity during Mn exposure. Put together, these findings substantially enhance understanding of the regulation of brain Mn by excretion.NEW & NOTEWORTHY This article shows that, in contrast with expectations from prior studies and physiological conditions, excretion of manganese by the intestines and liver is equally important in controlling brain manganese during human-relevant manganese exposure. The results provide foundational insights about the interorgan mechanisms that control brain manganese homeostasis at the organism level and have important implications for the development of therapeutics to treat manganese-induced neurological disease.


Assuntos
Proteínas de Transporte de Cátions , Manganês , Camundongos , Animais , Humanos , Manganês/toxicidade , Proteínas de Transporte de Cátions/metabolismo , Fígado/metabolismo , Camundongos Knockout , Encéfalo/metabolismo
9.
Biol Psychiatry Glob Open Sci ; 3(3): 460-469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519473

RESUMO

Background: Early-life environmental exposures during critical windows (CWs) of development can impact life course health. Exposure to neuroactive metals such as manganese (Mn) during prenatal and early postnatal CWs may disrupt typical brain development, leading to persistent behavioral changes. Males and females may be differentially vulnerable to Mn, presenting distinctive CWs to Mn exposure. Methods: We used magnetic resonance imaging to investigate sex-specific associations between early-life Mn uptake and intrinsic functional connectivity in adolescence. A total of 71 participants (15-23 years old; 53% female) from the Public Health Impact of Manganese Exposure study completed a resting-state functional magnetic resonance imaging scan. We estimated dentine Mn concentrations at prenatal, postnatal, and early childhood periods using laser ablation-inductively coupled plasma-mass spectrometry. We performed seed-based correlation analyses to investigate the moderating effect of sex on the associations between Mn and intrinsic functional connectivity adjusting for age and socioeconomic status. Results: We identified significant sex-specific associations between dentine Mn at all time points and intrinsic functional connectivity in brain regions involved in cognitive and motor function: 1) prenatal: dorsal striatum, occipital/frontal lobes, and middle frontal gyrus; 2) postnatal: right putamen and cerebellum; and 3) early childhood: putamen and occipital, frontal, and temporal lobes. Network associations differed depending on exposure timing, suggesting that different brain networks may present distinctive CWs to Mn. Conclusions: These findings suggest that the developing brain is vulnerable to Mn exposure, with effects lasting through late adolescence, and that females and males are not equally vulnerable to these effects. Future studies should investigate cognitive and motor outcomes related to these associations.

10.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205412

RESUMO

The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

11.
Metallomics ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36990693

RESUMO

Loss-of-function mutations in SLC30A10 induce hereditary manganese (Mn)-induced neuromotor disease in humans. We previously identified SLC30A10 to be a critical Mn efflux transporter that controls physiological brain Mn levels by mediating hepatic and intestinal Mn excretion in adolescence/adulthood. Our studies also revealed that in adulthood, SLC30A10 in the brain regulates brain Mn levels when Mn excretion capacity is overwhelmed (e.g. after Mn exposure). But, the functional role of brain SLC30A10 under physiological conditions is unknown. We hypothesized that, under physiological conditions, brain SLC30A10 may modulate brain Mn levels and Mn neurotoxicity in early postnatal life because body Mn excretion capacity is reduced in this developmental stage. We discovered that Mn levels of pan-neuronal/glial Slc30a10 knockout mice were elevated in specific brain regions (thalamus) during specific stages of early postnatal development (postnatal day 21), but not in adulthood. Furthermore, adolescent or adult pan-neuronal/glial Slc30a10 knockouts exhibited neuromotor deficits. The neuromotor dysfunction of adult pan-neuronal/glial Slc30a10 knockouts was associated with a profound reduction in evoked striatal dopamine release without dopaminergic neurodegeneration or changes in striatal tissue dopamine levels. Put together, our results identify a critical physiological function of brain SLC30A10-SLC30A10 in the brain regulates Mn levels in specific brain regions and periods of early postnatal life, which protects against lasting deficits in neuromotor function and dopaminergic neurotransmission. These findings further suggest that a deficit in dopamine release may be a likely cause of early-life Mn-induced motor disease.


Assuntos
Proteínas de Transporte de Cátions , Manganês , Humanos , Adulto , Animais , Camundongos , Adolescente , Manganês/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transportador 8 de Zinco/genética , Dopamina , Encéfalo/metabolismo , Camundongos Knockout , Transmissão Sináptica
12.
Neurotherapeutics ; 20(1): 3-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853434

RESUMO

Behavioral disorders involving attention and impulse control dysfunction, such as ADHD, are among the most prevalent disorders in children and adolescents, with significant impact on their lives. The etiology of these disorders is not well understood, but is recognized to be multifactorial, with studies reporting associations with polygenic and environmental risk factors, including toxicant exposure. Environmental epidemiological studies, while good at establishing associations with a variety of environmental and genetic risk factors, cannot establish causality. Animal models of behavioral disorders, when properly designed, can play an essential role in establishing causal relationships between environmental risk factors and a disorder, as well as provide model systems for elucidating underlying neural mechanisms and testing therapies. Here, we review how animal model studies of developmental lead or manganese exposure have been pivotal in (1) establishing a causal relationship between developmental exposure and lasting dysfunction in the domains of attention, impulse control, and affect regulation, and (2) testing the efficacy of specific therapeutic approaches for alleviating the lasting deficits. The lead and manganese case studies illustrate how animal models can advance knowledge in ways that are not possible in human studies. For example, in contrast to the Treatment of Lead Poisoned Children (TLC) human clinical trial evaluating succimer chelation efficacy to improve cognitive functioning in lead-exposed children, our developmental lead exposure animal model showed that succimer chelation can produce lasting cognitive benefits if chelation sufficiently reduces brain lead levels. In addition, this study revealed that succimer treatment in the absence of lead exposure produces lasting cognitive dysfunction, highlighting potential risks of chelation in off-label uses, such as the treatment of autistic children without a history of lead exposure. Our animal model of developmental manganese exposure has demonstrated that manganese can cause lasting attentional and sensorimotor deficits, akin to an ADHD-inattentive behavioral phenotype, thereby providing insights into the role of environmental exposures as contributors to ADHD. These studies have also shown that oral methylphenidate (Ritalin) can fully alleviate the deficits produced by early developmental Mn exposure. Future work should continue to focus on the development and use of animal models that appropriately recapitulate the complex behavioral phenotypes of behavioral disorders, in order to determine the mechanistic basis for the behavioral deficits caused by developmental exposure to environmental toxicants, and the efficacy of existing and emerging therapies.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Animais , Criança , Humanos , Adolescente , Chumbo/toxicidade , Manganês/toxicidade , Quelantes/uso terapêutico , Succímero/uso terapêutico , Atenção , Modelos Animais , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico
13.
Front Neurosci ; 17: 1098441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814793

RESUMO

Introduction: Adolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. Methods: In 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. Results: We observed significant negative associations between the metal mixture and GE and LE [ßGE = -0.076, 95% CI (-0.122, -0.031); ßLE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. Discussion: Our results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal.

14.
J Prev Interv Community ; 51(3): 225-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34096479

RESUMO

Home-delivered meals have shown considerable promise in overcoming nutritional challenges among homebound older adults facing food insecurity and the risk of diabetes, while nutrition counseling provides knowledge and skills for diabetes management. The purpose of this study was to identify the impact of a program combining nutrition counseling with home-delivered meals by examining the use of hospital services 6 months before and after participating in the program. This study included 1009 clients who are at risk for diabetes and who received home-delivered meals and nutrition counseling via Meals on Wheels in Fort Worth, Texas. Hospital service data were extracted from a regional claims database. Generalized linear models were performed to examine changes in use of hospital services 6 months before and after program participation. The mean number of emergency department visits and hospitalizations decreased from 0.69 to 0.50 (p < .001) and from 0.35 to 0.22 (p < .001), respectively. The findings of this study indicate that combining structured nutritional counseling with home-delivered meals may contribute to reducing healthcare use among older adults facing the challenges of diabetes and food insecurity.


Assuntos
Serviços de Alimentação , Pacientes Domiciliares , Humanos , Idoso , Hospitais , Aconselhamento
15.
J Prev Interv Community ; 51(3): 205-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34157245

RESUMO

A collaborative partnership among community-based organizations (CBOs) could strengthen local services and enhance the capacity of a community to provide services as well as meet the diverse needs of older adults. The United Way of Tarrant County developed the LIVE WELL Initiative, partnering with six CBOs to provide nine evidence-based or evidence-informed health interventions to improve the health and lower healthcare costs of vulnerable individuals at risk for poor health. The nine programs include specific target areas, such as falls prevention, chronic disease self-management, medication management, and diabetes screening and education. A total of 63,102 clients, nearly 70% of whom were older adults, were served through the Initiative. Significant improvements in self-reported health status were observed among served clients. The percentage of clients reporting self-rated health as good, very good, and excellent increased from 47.5% at baseline to 61.1% at follow-up assessment. The mean healthy days improved from 16.9 days at baseline to 20.6 days at follow-up assessment. Additional improvements in program-specific outcomes demonstrated significant impacts of targeted intervention focus among served clients by program. The findings of this study emphasize that the impact of a collaborative partnership with multiple CBOs could promote health and well-being for older adults.


Assuntos
Promoção da Saúde , Autogestão , Humanos , Idoso , Doença Crônica
16.
Front Comput Neurosci ; 17: 1302010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260714

RESUMO

Introduction: The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). Methods: We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13-25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Results: Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Discussion: Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

17.
Neurotoxicology ; 93: 84-91, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122627

RESUMO

Elevated exposure to multiple trace metals can be neurotoxic even at relatively low levels. These findings are primarily evident from adult occupational studies as well as in children exposed prenatally or in early childhood. Less research has focused on the neurodevelopmental impacts of exposure to metals among school-aged children. We examined associations between exposure to a mixture of four metals (arsenic, cadmium, manganese, lead) measured in hair and markers of cognition, attention, and behavior among 222 6-12 year old children who participated in a 2009-2010 neurodevelopmental follow-up to the C8 Health Project. Using quantile-based g-computation we estimated the adjusted overall metal mixture effect ψ (95 % CI) as the change in outcome per decile increase in all metals in the mixture. Hair metal levels varied by metal, with cadmium being lowest (median 0.007, interquartile range (IQR) 0.013 µg/g) and lead the highest concentration (median 0.152, IQR 0.252 µg/g). Children's cognitive skills and development, attention/impulsivity, and behavior were all close to standardized population means. Each decile increase in all metals was associated with a Full Scale IQ reduction of 1.01 points (95 % confidence interval (CI) -1.88, -0.15) and Verbal IQ reduction of 1.11 points (95 % CI -1.97, -0.25), adjusted for child age, sex, secondhand smoke exposure, HOME score, maternal education, maternal IQ, and examiner. Maternal report of ADHD-like behaviors and executive functioning also showed adverse associations with the metal mixture. Our findings suggest that similar to exposure during prenatal and early childhood periods, recent exposure to metals during middle childhood is associated with adverse neurodevelopmental consequences. Middle childhood may also be a developmental window of susceptibility to the negative consequences of exposure to environmental neurotoxicants.


Assuntos
Arsênio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Adulto , Feminino , Humanos , Criança , Pré-Escolar , Cádmio/toxicidade , Exposição Ambiental/efeitos adversos , Metais/toxicidade , Arsênio/análise , Manganês/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
18.
Brain Sci ; 12(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35741641

RESUMO

Background: Sensorimotor difficulties significantly interfere with daily activities, and when undiagnosed in early life, they may increase the risk of later life cognitive and mental health disorders. Subtests from the Luria-Nebraska Neuropsychological Battery (LNNB) discriminate sensorimotor impairments predictive of sensorimotor dysfunction. However, scoring the LNNB sensorimotor assessment is highly subjective and time consuming, impeding the use of this task in epidemiologic studies. Aim: To train and validate a novel automated and image-derived scoring approach to the LNNB neuro-motor tasks for use in adolescents and young adults. Methods: We selected 46 adolescents (19.6 +/− 2.3 years, 48% male) enrolled in the prospective Public Health Impact of Metal Exposure (PHIME) study. We visually recorded the administration of five conventional sensorimotor LNNB tasks and developed automated scoring alternatives using a novel mathematical approach combining optic flow fields from recorded image sequences on a frame-by-frame basis. We then compared the conventional and image-derived LNNB task scores using Pearson's correlations. Finally, we provided the accuracy of the novel scoring approach with Receiver Operating Characteristic (ROC) curves and the area under the ROC curves (AUC). Results: Image-derived LNNB task scores strongly correlated with conventional scores, which were assessed and confirmed by multiple administrators to limit subjectivity (Pearson's correlation ≥ 0.70). The novel image-derived scoring approach discriminated participants with low motility (

19.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G79-G92, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786983

RESUMO

The essential metal manganese (Mn) induces incurable neurotoxicity at elevated levels that manifests as parkinsonism in adults and fine motor and executive function deficits in children. Studies on Mn neurotoxicity have largely focused on the role and mechanisms of disease induced by elevated Mn exposure from occupational or environmental sources. In contrast, the critical role of excretion in regulating Mn homeostasis and neurotoxicity has received less attention although 1) studies on Mn excretion date back to the 1920s; 2) elegant radiotracer Mn excretion assays in the 1940s to 1960s established the routes of Mn excretion; and 3) studies on patients with liver cirrhosis in the 1990s to 2000s identified an association between decreased Mn excretion and the risk of developing Mn-induced parkinsonism in the absence of elevated Mn exposure. Notably, the last few years have seen renewed interest in Mn excretion largely driven by the discovery that hereditary Mn neurotoxicity due to mutations in SLC30A10 or SLC39A14 is caused, at least in part, by deficits in Mn excretion. Quite remarkably, some of the recent results on SLC30A10 and SLC39A14 provide explanations for observations made ∼40-50 years ago. The goal of the current review is to integrate the historic studies on Mn excretion with more contemporary recent work and provide a comprehensive state-of-the-art overview of Mn excretion and its role in regulating Mn homeostasis and neurotoxicity. A related goal is to discuss the significance of some of the foundational studies on Mn excretion so that these highly consequential earlier studies remain influential in the field.


Assuntos
Homeostase/efeitos dos fármacos , Manganês/toxicidade , Metais/metabolismo , Proteínas de Transporte de Cátions/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Humanos , Mutação/efeitos dos fármacos , Mutação/genética , Transtornos Parkinsonianos/tratamento farmacológico
20.
Sci Total Environ ; 810: 151288, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756903

RESUMO

BACKGROUND: Pesticides and metals may disrupt thyroid function, which is key to fetal brain development. OBJECTIVES: To evaluate if current-use pesticide exposures, lead and excess manganese alter free thyroxine (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) concentrations in pregnant women from the Infants' Environmental Health Study (ISA). METHODS: At enrollment, we determined women's (n = 400) specific-gravity corrected urinary pesticide (µg/L) metabolite concentrations of mancozeb (ethylene thiourea (ETU)), pyrimethanil, thiabendazole, chlorpyrifos, synthetic pyrethroids, and 2,4-D. We also measured manganese hair (MnH) (µg/g) and blood (MnB) (µg/L), and blood lead (PbB) (µg/L) concentrations. To detect an immediate and late effect on thyroid homeostasis, we determined TSH, FT4 and FT3 in serum obtained at the same visit (n = 400), and about ten weeks afterwards (n = 245). We assessed associations between exposures and outcomes with linear regression and general additive models, Bayesian multivariate linear regression, and Bayesian kernel machine regression. RESULTS: About 80%, 94%, and 100% of the women had TSH, FT4, and FT3 within clinical reference ranges, respectively. Women with higher urinary ETU, and pyrimethanil-metabolites, had lower FT4: ß = -0.79 (95%CI = -1.51, -0.08) and ß = -0.29 (95%CI = -0.62, -0.03), respectively, for each tenfold increase in exposure. MnB was positively associated with FT4 (ß = 0.04 (95%CI = 0.00, 0.07 per 1 µg/L increase), and women with high urinary pyrethroid-metabolite concentrations had decreased TSH (non-linear effects). For the late-effect analysis, metabolites of pyrethroids and chlorpyrifos, as well as MnH, and PbB were associated decreased TSH, or increased FT4 and/or FT3. DISCUSSION: Mancozeb (ETU) and pyrimethanil may inhibit FT4 secretion (hypothyroidism-like effect), while chlorpyrifos, pyrethroids, MnB, MnH, PbB and Mn showed hyperthyroidism-like effects. Some effects on thyroid homeostasis seemed to be immediate (mancozeb (ETU), pyrimethanil, MnB), others delayed (chlorpyrifos, MnH, PbB), or both (pyrethroids), possibly reflecting different mechanisms of action.


Assuntos
Exposição Ambiental/efeitos adversos , Chumbo/efeitos adversos , Manganês , Praguicidas , Glândula Tireoide/fisiopatologia , Teorema de Bayes , Costa Rica , Feminino , Humanos , Lactente , Manganês/efeitos adversos , Praguicidas/efeitos adversos , Gravidez , Gestantes , Tireotropina , Tiroxina , Tri-Iodotironina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...